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RESEARCH MEMORANDUM 

ANALYSIS OF EXPERIMENTAL LOW-SPE33D LOSS AND STALL C-CTERISTICS 

OF TWO-DIMENSIONAL CMPFESSOR BLADE CASCADES 

By Seymour Lieblein 

SUMMARY 

An analysis of the iow-speed experimental loss chaxe,cterlstiea of 
conventional 10-percent-thick low-speed compressor cascade sections i s  
presented i n  terms of wake momentum thickness and blade velocity diffusion. 
Blade-wake momentum thickness, expressed as a r a t i o  t o  the chord length, 
is  computed from various reported loss parameters by means of derived con- 
version equations. 
m a x i m u m  upper-surface velocity t o  outlet  velocity and as an equivalent 
r a t i o  expressible i n  terms of the blade so l id i ty  and velocity tr iangle.  

Within the res t r ic t ions  of the available data, an essentially uni- 

B lade  diffusion i s  expressed as the r a t i o  of measured 4 
I 

3 
L 

versal  correlation between wake momentum thickness and equivalent diffu- 
sion r a t i o  i s  obtained at angles of attack at minimum loss  and greater f o r  
a wide range of blade configurations. Further correlations indicate that 
blade s ta l l  at angles of attack at m i n i m u m  loss  and greater, as evidenced 
by a sharp rise i n  wake momentum thickness, is possible whenever the equiv- 
a lent  diffusion r a t i o  exceeds a value of about 2. Means of estimating the 
low-speed total-pressure loss and the unstalled range of operation of con- 
ventional cascade sections as functions of sol idi ty ,  air i n l e t  angle, and 
air  turning angle a re  obtained, and examples and l imitations of the appli-  
cation of the r e su l t s  t o  blade design are presented. 

-w 

INTRODUCTION 

Investigations of two-dimensional-cascade sections have frequently 
been u t i l i zed  i n  axial-flow-compressor research t o  gain an insight into 
the  loss and s ta l l  character is t ics  of compressor blade elements. I n  par- 
t i cu l a r ,  it i s  currently desirable t o  obtain generalized correlations f o r  
cascade losses covering wide ranges of cascade geometries. 

b 

s 
I n  order t o  f a c i l i t a t e  the determination of generalized loss corre- 

la t ions,  it is  necessary that a loss parameter be used that is  independent 
of the cascade geometry (sol idi ty  and chord o r  air angles) and is a 
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function of only the individual blade wakes. The theore t ica l  loss  anal- 

influence the cascade loss  a re  the momentum thickness (expressed nondimen- 
sionally as a r a t i o  to  the chord length) and the form factor .  The wake 
form factor,  however, according t o  reference 2, i s  effectively constant 
at the  usual cascade measuring-station location (1 t o  1.5 chord lengths 
downstream of the blade t r a i l i n g  edge) f o r  a wide range of cascade geome- 
t r ies  and losses. The primary wake character is t ic  descriptive of the 
cascade loss  is thus the measuring-station blade-wake momentum thickness. 
The wake momentum thickness should therefore consti tute a fundamental 
parameter f o r  the correlation of cascade losses.  

ys i s  of reference 1 s h o w s  t ha t  the principal wake character is t ics  t ha t  h 

bR 

n n 
n 

Since the blade wake i s  formed from the pressure- and suction- 
surface boundary layers, the wake momentum thickness w i l l  depend on the 
blade surface velocity dis t r ibut ion.  Experience has shown that blade 
surface velocity distributions that r e su l t  i n  large amounts of diffusion 
i n  velocity along the surfaces tend t o  produce re la t ive ly  thick boundary 
layers and eventual separation or stall. The concept of velocity diffu-  
sion has, therefore, been an important one i n  the analysis of blade losses.  
Simplified relat ions are obtained i n  references 3 t o  8 f o r  the prediction 
of boundary-layer- growth, flow separation, or maximum l i f t  coefficient i n  
t e r m s  of surface velocity diffusion. 

I n  the present report, the concept of velocity diffusion i s  applied 

Wake momentum thicknesses of con- 

- 
i 

i n  an analysis of blade losses expressed i n  terms of the fundamental 
parameter of wake momentum thickness. 
ventional low-speed cascade blade sections a re  computed from experimental 
loss coefficients and correlated against simplified upper (suction) surface 
diffusion parameters i n  the range of operation from minimum loss  t o  posi- 
t i v e  s t a l l .  The data correlations are expressed first i n  terms of meas- 
ured maximum upper-surface veloci t ies  and later, f o r  cases for which sur- 
face velocity data are  unavailable, i n  equivalent terms based on i n l e t  
and out le t  veloci t ies .  The question of blade s ta l l  is  discussed, and 
considerations are presented f o r  predicting the loss,  s tall  point, and 
operating range of cascade sections i n  the range of angle of attack from 
minimum loss t o  posit ive s ta l l .  
shape, section thickness, and Reynolds number on the diffusion correla- 
t i o n  are a l so  considered. 

.4 

The ef fec ts  of such fac tors  as blade 

The analysis i s  based on the  systematic cascade data for the NACA 
65-series compressor blade sections of references 9 and 10, and on the 
l imited available data f o r  the Br i t i sh  C.4  circular-arc blades of refer- 
ences 11 and 1 2 .  Restrictions and l imitat ions involved i n  the application 
of the resclts tc c z s c ~ & e  pcrforr;Gzce =r,aljises &iscussed. 

tr( 
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SYMBOLS 

aspect ra t io ,  r a t i o  of blade span t o  mean chord length 

constants i n  loss and diffusion-ratio equations 

drag coefficient 

wall f r i c t i o n  coefficient 

isolated l i f t  coefficient (used i n  designation of I W A  65-series 
blades) 

wake force coefficient 

crhoric ley?gth 

equivalent diffusion r a t i o  (defined by eq. (8 ) )  

force 

wake momentum force 

wake form factor ,  S*/O 

coordinate normal to  outlet-flow direction 

t o t a l  pressure 

averaged decrease in  t o t a l  pressure 

s t a t i c  pressure 

blade-chord Reynolds number 

radius 

blade spacing normal t o  axial direction 

blade spacing normal t o  out le t  f l o w  direction 

blade thickness 

flow velocity 

coordinate d o n g  out le t  flow direction 

coordinate normal t o  axial direction 
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coordinate along axial direction 

angle of attack, angle between blade chord and i c l e t - a i r  direction, 
de 63 

air angle, angle between airflow and axial direction, deg 

blade-chord angle, angle between blade chord and axial direction, 
deg 

wake full thickness 

wake displacement thickness 

wake momentum thickness 

mass density 

sol idi ty ,  r a t i o  of chord t o  spacing 

total-pressure-loss parameter 

total-pressure-loss coefficient based on i n l e t  velocity, (E) .&pl 1 2  

total-pr,essure-loss coefficient based on out le t  velocity, 

- 7  

ul,, total-pressure-loss coefficient fo r  complete mixing based on i n l e t  

velocity, (E)&~v: 
- 

for complete mixing based on out le t  

Subs c r ip  t s : 

A area average 

D drag 
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lift 

lower surface 

mass average 

vector mean condition 

maximum 

zloirmal t o  out le t  flow direction 

reference 

stall 

plane of t r a i l i ng  edge 

upper surface 

normal t o  axial  direction 

axial direction 

free stream 

inlet 

out le t  measuring s ta t ion 

far downstream where complete mixing has taken place 

Superscript: 

* reference minimum-loss value 

DA!CA SOURCES 

The cascade loss data used in  the analysis were  obtained from inves- 
t igations of the NACA 65-(AlO)-series blades i n  reference 9, the NACA 
65-(AI) aeries blades i n  reference 10, and the Br i t i sn  C.4 circular-arc 
mean-line blades i n  references 11 and 12.  
nose profiles of 10-percent maximum thickness. 
65-(c~&10)10 blades (ref. 9 )  and the circular-arc blades (refs. 11 and 
12), whose man camber l ines  are symmetrical about the midchord point, 

All blades are low-speed thick- 
Both the NACA 
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tend t o  give uniform chordwise design pressure loading. 
65-(CzoAzIeb)lo blade of reference 10 is  a rearward loading section; the 
65-(Cz0A614)10 blade (ref.  10) is  a forward loading section; and the 
65r(Cz$1614b)10 blade ( re f .  10) is  Partway between the A1O and A218b mean 
l ines .  The various blade shapes considered are described and compared i n  
references 10 and 12 .  

The NACA 

Ident i f icat ion information concerning the various blade configura- 
t ions and cascade tunnels used i n  the data  sources i s  given i n  tab le  I. 
I n  all cases, because of the tunnel size,  boundmy-layer control, or 
operating techniques employed, good two-dimensionality was obtained i n  
the  cascade flow. Blade-chord Reynolds numbers were between about 
2. OX105 and 4. 5 X 1 O 5 .  

CALCULATIONS 

As indicated previously, the data correlations are  t o  be expressed 
i n  terms of the fundamental loss  parameter of wake momentum thickness. 
Because of t he  general absence of specif ic  experimental data describing 
the character is t ics  of the wakes of cascade blades, it was  necessary t o  
establish methods fo r  computing the nondimensional wake momentum thick- 
ness from the par t icular  loss parameters used i n  the various cascade in- 
vestigations.  The principal loss  parameters i n  use i n  cascade research 
axe the  wake coefficient Cw ( re f .  9), the d r a g  coefficient CD ( re fs .  9 
and ll), and the total-pressure-loss coefficient 
equations and techniques obtained fo r  computing the nondimensional momen- 
tum thickness a t  the cascade measuring s t a t ion  (Q/c)2 from these l o s s  
parameters are developed i n  appendixes A t o  E. The developments assume 
incompressible flow and an out le t  flow model as shown i n  f igures  1 and 2. 
True two-dimensional flow i s  assumed f o r  a l l  the  data converted. The 
calculation of (O/c), fo r  a given magnitude of loss  parameter, as indi-  
cated i n  the appendixes, requires a knowledge of the air  in l e t  and out le t  
angles, the cascade sol idi ty ,  and the wake form fac tor .  

6 ( ref .  4). The various 

For the  NACA 65-series blades of references 9 and 10, wake momentum 
thickness (e/c), 

ing t o  equation (A12) i n  appendix A. 
and 12,  (e/c), 

ing t o  equations (B16) and (B18), respectively. 
coefficient 
ured d r a g  coefficients according t o  equation (E l )  o r  (E2). 

An example of the var ia t ions of computed (e/c), 

was computed from the measured wake coefficient accord- 
For the C.4 blades of references 11 

was computed from the measured drag coefficients accord- 

was  computed fo r  simplicity i n  all cases from the meas- 
Total-pressure-Loss 

and G, with angle 
of attack is  given i n  figure 3. Figure 3 also shows the definit ion of the 
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reference point of minimum loss.  
t ions of (+) 
then obtained. 

From plo ts  such as figure 3, the varia- 
with the pertinent correlation parameters considered were 

I n  many cases, e r r a t i c  variations of kx.s parameter were observed i n  

An i l l u s t r a t i v e  p lo t  of the var- 
the or iginal  data because of sudden changes i n  the b o u n w - l a y e r  flow 
ar i s ing  from loca l  laminar separations. 
i a t ion  of computed momentum thickness w i t h  angle of attack f o r  a cascade 
with loca l  laminar separation i s  shown i n  f igure 4. 
it was  necessary t o  estimate the probable var ia t ion of the loss parameter 
i n  the absence of a loca l  laminar separation (as indicated i n  the figure) 
and use values obtained from the faired curves f o r  the correlations.  
Errat ic  loss curves w e r e  observed f o r  the 65-(C2&0)10 blades of refer- 
ence 9, the 65-(C2&21~b>10 blades of reference 10, and the blades of re fer -  
pnrp 11. The 65-(12A614)10 and 65-(12A614bu)10 blades of reference 10 and 
the circular-arc blade of reference 1 2  w e r e  comparatively f r e e  of e r r a t i c  
boundary-layer changes. 

In such instances, 

Because of the factors  involved in the calculation procedure cer ta in  
unavoidable errors  may be introduced i n  the determination of (B/cjz as a 
re su l t  of inconsistencies and inaccuracies ia either the o r i g i d  loss- 
parameter determination o r  i n  the subsequent conversion t o  wake momentum 
thickness, or both. However, it is believed that any errors  involved i n  
the calculation of (@/cIz w i l l  be small enough not t o  mask the pr incipal  
r e su l t s  of the f i n a l  correlations. 

ANALYSIS 

Approach 

Examination of blade surface velocity dis t r ibut ions of conventional 
cascade sections, as i l l u s t r a t ed  i n  figure 5, shows that, f o r  angles of 
attack greater than those at about the point of reference minimum loss 
(as defined i n  f ig .  3),  large negative gradients of velocity exist on the 
upper (suction) surface of the blade. In  this region of blade operation, 
the upper-surface boundary layer contributes the major share of the wake, 
and, theref ore, the upper-surf ace velocity dis t r ibut ion becomes the  gov- 
erning fac tor  i n  the determination of the wake loss. 
sis of the  diffusion approach considers that, i n  the range of blade oper- 
a t ion f r o m  minimum loss  t o  posit ive stall, the momentum thickness of the 
blade wake var ies  w i t h  the diffusion in velocity on the upper surface of 
the blade. It is  further considered that, for  conventional velocity 
dis t r ibut ions as i l l u s t r a t e d  by figure 5, the diffusion i n  velocity can 
be expressed s ignif icant ly  as a pmameter involving the maximum surface 
velocity and the out le t  velocity.  
diffusion is expressed i n  terms of the r a t i o  of the maximum upper-surface 

The general hypothe- 

I n  the present analysis, the veloci ty  
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velocity t o  the out le t  free-stream velocity Vmax/V0,2. 
of the  analysis, therefore, presents a correlation of wake momentum thick- 
ness with blade surface diffusion r a t i o  
l i d i t y  of the diffusion assumption. Correlations are presented f o r  the 
reference minimum-loss point and fo r  greater angles of attack. 

The f i r s t  p a r t  

Vm&0,2 t o  determine the va- 

Since blade surface velocity dis t r ibut ion data  are  not generally 
available f o r  a l l  usable blade shapes, it is  desirable t o  investigate 
ways of extending the diffusion correlation t o  cases f o r  which the surface 
velocity character is t ics  are  unknown. To accomplish t h i s ,  appropriate 
empirical re la t ions w e r e  investigated between the surface diffusion r a t i o  
Vm.&Vo,2 
and out le t  flow conditions. Equivalent diffusion r a t io s  based on over- 
a l l  veloci t ies  are then established from these empirical re la t ions.  

and derived readily calculated quantit ies based only on i n l e t  

B l a d e  Surf ace Diffusion R a t  i o  

The i n i t i a l  correlation of wake momentum thickness against suction- 
surface diffusion r a t i o  V & O , ~  w a s  made fo r  the reference condition 
of minimum-loss angle of attack as defined i n  figure 3. For simplicity, 
the  free-stream out le t  velocity V O , ~  was computed from measured air 
angles such that1 

w h e r e  Vmax/Vl w a s  determined from the plots  of experimental upper- 
surface velocity dis t r ibut ion i n  the data references. 
and Vmax/v0,2 
from fa i red  curves of these quantit ies aga ins t  angle of attack (as i l l u s -  
t r a t e d  i n  f i g .  3 f o r  ( € J / c ) ~ ) .  

Values of (e/c), 
a t  minimum loss  fo r  a given blade section were obtained 

Correlation at minimum-loss angle of attack. - The plot of ( € J / C ) ~  
against Vm&Vo,2 at  reference minimum-loss angle of attack obtained 
from the available cascade data covering a w i d e  range of cambers, so l id i -  
ties, and a i r  inlet angles i s  shown i n  figure 6. The data  are plot ted i n  

'Theoretically, i n  two-dimensional-cascade flow w i t h  wakes, the r a t i o  
of approximate Vo,2 (as determined from only the cosines of the air 
angles, eq. (1)) t o  exact v i s  given by the following (from eq. 
(A10) ) : 092 

+P co co 
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two parts:  
blade-chord Reynolds numbers, the 65-(Alo) -series blades (ref.  9)  and the 
C.4 circular-arc blades (refs. 11 and 12)  are presented together i n  f igure 

because of t he i r  s i m i l a r  surface velocity distributions and 

a); and the 65-(AI)-series blades of reference 10 are  plot ted i n  figure 

Figure 6(a) provides an essent ia l  confirmation of the basic diffusion 

f o r  a wide range of blade 
hypothesis f o r  the 6 5 - ( C t & 0 ) 1 0  blade, i n  that a well-defined correla- 
t i o n  i s  obtained between (e/c), 
configurations. It also appears, from the limited available data (sol id  
symbols i n  f ig .  6(a)),  that the C.4 circular-arc blades should exhibit a 
s i m i l a r  correlation. 

012 and Vmm/V 

For a velocity r a t i o  of 1 (no diffusion), the data of figure 6(a) 
extrapolate t o  a value of (8/c]z 
condition of V m a x / v , , z  
spond essent ia l ly  t o  f la t -p la te  flow. 
number of 2.5x105, the wake momentum thickness for  two surfaces i s  ob- 
tained from the w a l l  f r i c t i o n  coefficient (e/c = Cfr/2 
0.0027 f o r  completely laminar flow and 0.0059 fo r  completely turbulent 
flow (ref. 13, f i g .  88, e.g.). 
trapolated value of (O/c), at Vmax/v0,2 = 1 i n  figure 6(a) would l i e  
between these two values. 

of about Q,004, For thp hyvpt.kt.jcnl 
equal t o  1, the blade surface flow should corre- 

For the f la t  p la te  at a Reynolds 

for  a surface) as 

It i s  expected, therefore, that the ex- 

On the high-diffusion-ratio end of the plot  i n  figure 6(a), there 
are  two points at a V,&O,~ of about 2.1 that appear t o  fall somewhat 
above the indicated band of the correlation. Whether these high points 
are the r e su l t  of experimental e r ror  o r  r e f l ec t  some significant increase 
i n  the spread of the  data at high diffusion r a t io s  is  not apparent from 
these data. 

Figure 6(b) indicates that, with minor exceptions, the *data from the 
65-(AI)-series blades of reference 10 f a l l  within the l i m i t s  of the data 
fo r  the 65-(Alo)-series blades and the C.4 circular-a;rc blades (dashed 
curves i n  f i g .  6(b)) . The two high values of (Q/c); between (Vmax/vg,2)* 
of 1.50 and 1.55 for the 65-(C20A&b)10 blade are  not considered t o  
indicate any signif icant  departures from the  principal correlation of 
f igure 6(a). It i s  believed that these high points are the r e su l t  of 
extensive laminar separation e f fec ts  that could not be fa i red  out i n  the 
p lo t s  of (e/& against a. 

d The two low points f o r  the 65-(12A&)10 blade i n  figure 6(b), how- 
ever, are believed t o  be due t o  a fundamental effect .  
figure 5 that the blade (fig. 5(d)) has a considerably smaller velocity 
deceleration on the lower surface at minimum-loss angle of attack than 

It i s  noted i n  

I 
tt 
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a l l  the other blades. 
,sequently, a smaller wake momentum thickness should therefore r e su l t  f o r  . 
the same values of upper-surface diffusion for  t h i s  blade. 

A smaller lower-surface boundary l aye r  and, con- 

Correlation over range of angle of attack. - A fur ther  indication of 
the momentum-thickness variations at high diffusion r a t i o s  i s  obtained 
from the p lo t  of (e/c), against Vmax/Vo,z f o r  all data  points at angles 
of attack greater than the minimum-loss point (a > a?, as shown i n  f igure 
7.  appearing i n  the plots  
are fa i red  values. Furthermore, data  points f o r  which the measured 
Vm,/Vl r a t i o s  appeared t o  be unreasonable, l i k e  the high a points f o r  

C z o  

‘ E  As f o r  the case of f igure 6, values of (e/c), 
N 
N 

of 12 i n  figure 11, are omitted i n  the correlation. 

For the 65-(cz0Alo)10 blades i n  figure 7 (a), i n  general, a correla- 
t i o n  similar t o  that at minimum loss (f ig .  6 (a) )  i s  obtained, but a wide 
dispersion of the data occurs fo r  V ~ J V O , ~  greater than about 2. It 
could not be determined, because of insuff ic ient  data, whether the  C . 4  
circular-arc blade shows a s i m i l a r  character is t ic  a t  high diffusion 
r a t io s .  (Velocity-distribution data at high angles of attack w e r e  not 
available fo r  blade 2.) 

Some of the sca t t e r  of the data at V,,/Vo > 2 i n  f igure 7(a) may 
* , 

be at t r ibuted t o  the  use of the approximate 
r a t io ,  since the e r ror  involved tends t o  increase w i t h  increasing (e/c), 
(see eq. ( 2 ) ) .  However, such ef fec ts  were not suff ic ient  t o  account f o r  
the  wide spread of the data. Another fac tor  influencing the data spread 
may be differences i n  the reduction i n  blade circulat ion a r i s ing  from the 
growth of the upper-surface boundary l a y e r  f o r  the different  cascade geom- 
etries.  This e f fec t  would tend t o  give different  values of measured V 
for  a given wake momentum thickness. 

V O , ~  f o r  the diffusion 

, 

022 

Furthermore, there are undoubtedly specif ic  differences i n  the  indi-  
vidual developments of the blade surface boundary layers that contribute 
t o  the  spread of the data i n  the high-loss region. 
large differences i n  boundary-layer developments m i g h t  arise from the 
extremely steep velocity gradients that occur on the upper surface at the 
leading edge f o r  many of the blades at high angles of attack. 
such an effect  was not distinguishable from the loss and velocity- 
dis t r ibut ion data  available. If separation of the upper-surface boundary 
layer occurs i n  this region (as is s t r o  ly suspected}, there may be large 
differences i n  the terminal values of (TC)~,  depending on whether a com- 
ple te  breakaway or  gradual thickening of the boundary l a y e r  ensues. There 
i s  a l so  the poss ib i l i ty  that  loca l  laminar separation e f fec ts  m y  yet be 
present a t  these high angles of a t tack.  
velocity gradients existing i n  the leading-edge region and the f i n i t e  
spacing between pressure taps, the recorded peak veloci t ies  m y  not  
necessarily be the true maximum va lues .  

It w a s  thought that 

However, 

Finally,  i n  view of the large 4 

5, 
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A t  any rate, it is  obvious that the correlation between ( O / C ) ~  and 

It is  a l so  reasonable t o  in- 
V,,/VO,~ 
than about 2 f o r  the 65-(Cz&~o)~o blades. 
t e rpre t  the  high data points a t  minimum loss i n  f i  
the same type of wide ( e / C > ,  spread a t  high VJo 2 as i n  figure 
7(a). 
of suction-surface v ~ J v O , ~  of &out 2 delineates the region of diffu- 
s ion r a t i o  above which large increases i n  momentum thickness are possible 
f o r  angles of attack at minimum loss and greater f o r  the 65-(Cz&10)10 
blades. 

i n  figure 7(a) breaks down for  values of diffusion r a t i o  greater 

re 6(a) as indicating 

Thus, the correlations of figures 6(a) and 7(aj  show that a value 

2 

I n  the range of diffusion r a t i o  less  than 2, somewhat smaller values 
of (O/c), are obtained f o r  u>a* i n  figure 7(a) than at a* ( f i g .  6 (a) ) .  
This difference is believed due mainly t o  the more favorable pressure- 
s ---fac5 -"-e 
wake contribution, at high angles of attack (see f i g .  5) .  

it y ~ s t r  :bit 5 0;; , zz& tkcrefsre Sm,&&T $?re 9 c_"e - 1 X f  

For the 65-(AI)-series blades of reference 10, a somewhat different  
For the 65-(12A&)lO picture is obtained, as indicated i n  figure 7(b). 

(O/c), 
blades i n  f igure 7(a)  (as indicated by the dashed l ines  i n  f i g .  7(b)). 
Flowever, there are many points that f a l l  far above the upper l i m i t .  
of the high points below V&o 2 
produced the two high points i n  figure 6(b). 
a t t r ibu ted  t o  loca l  laminax separation effects .  

and 65-(12A61&)10 blades and f o r  most O f  the 65-(C2&2Ia)lO blades, the  
data fa l l  within the l i m i t s  of the  data f o r  the  65-(Cz0A10)10 

Most 
of 1.8 belong t o  the blades that 

9 
These discrepancies can be 

There may also be some question about the significance of the high 
points a t  V-/V0,2 greater than 1.8. (These va lues  a re  a l l  high-angle- 
of-attack points f o r  the high-cambered blades at 
A t  high angles of attack, the 65-(C2$L21~)10 blades experienced severe 
localized gradients of velocity on the upper surface at the leading edge 
(see ref. 10 and f i g .  5(e)). It is  q u i t e  possible t h a t  the t rue  m a x i m u m  
values of velocity may f a l l  between the surface pressure taps and be 
substantially greater than the maximum values recorded at the t ap  (the 
values of V,, 
However, i f  the recorded v a l u e s  are  t r u e  maximums, then  these blades a t  
the i r  par t icular  test conditions re-present a l imitat ion of the va l id i ty  
of the diffusion hypothesis i n  terms Of 

l31 of 45' and 60°.) 

used i n  the  plot  of f ig .  7(b) are m a x i m u m  t ap  readings). 

V,/Vo,2. 

2With ( 8 / ~ ) ~ < 0 . 0 2  f o r  V-/Vo 252 .0 ,  *om equation (2) ,  the  ap- , 
proximate V O , ~  
less than the exact value i n  a t rue  two-dimensional flow for  
and cr of 1.5. The l imiting diffusion r a t i o  based on an exact V O , ~  
may then be as low as 1.8. 

used i n  the diffusion r a t i o  can be up t o  about 10 percent 
fi2 of 70° 
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In  order t o  extend the diffusion correlation t o  design and analysis 
cases for which surface velocity data are  unavailable, it i s  desirable t o  
establish an equivalent diffusion r a t i o  approximately equal t o  Vmax/Vo, 
tha t  is  based on readily calculated i n l e t  and out le t  conditions. 
determination of an equivalent diffusion r a t i o  is  based on equation (1). 
With V1/Vo,2 obtained as before from 
establish an empirical correlation f o r  

* 

The 

cos p2/c0s p1, it remains t o  
Vmax/Vl. 

I n  general, the m a x i m u m  upper-surface velocity r a t i o  Vm,/vl i n  
the leading-edge region of a conventional blade section is  determined by 
the e f fec ts  of the blade thickness, the blade circulation, and the angle 
of attack ( re f .  14). 
V m d V 1  
culation t o  in l e t  velocity and the cosine of the air i n l e t  angle. 
product, cal led the circulat ion parameter r, i n  incompressible two- 
dimensional flow i s  given by 

Examination of available cascade data shows that 
can be correlated against the product of the r a t i o  of blade c i r -  

This 

I+ 
hJ 
hJ co 

The correlation f o r  Vm,/V1 against c i rculat ion parameter f o r  the data 3 

at minimum-loss angle of attack i s  shown in  figure 8. An empirical equa- 
t i on  fo r  V&l at minimum loss  is  readily derived f o r  the 
65-(C&~10)10 and C.4 circular-arc blades, as shown i n  figure 8(a), t o  be 

The empirical var ia t ion of equation (4) i s  not as effectively representa- 
t i v e  of the 65-(AI)-series blades as revealed i n  f igure 8(b).  
as w i l l  be sharn l a t e r ,  t h i s  i s  of no serious consequence. 
diffusion r a t i o  at minimum loss designated by the  symbol D* 
obtained i n  terms of i n l e t  and out le t  conditions from equations (1) and 

Ebwever, 
The equivalent 

is then 
eq 

(4) as 

* The corresponding p lo t  of (e/.); against D~~ at minimum l o s s  is  
shown i n  f igure 9.  
the  band of the data is  somewhat greater i n  figure 9 
6(a), the average values and rates of increase of ( 6  

For the 65-(Cz0A10)10 blades i n  figure 9(a),  although - 
than i n  figure 

'V 
are  considered 

CONFIDENTIAL 
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t o  be sat isfactor i ly  expressed in  terms of the equivalent diffusion r a t i o  
of equation (5). 
i s  obtained f o r  a l l  of the 65-(AI)-series blades. 
blades (blade 6), which had previously appeared low i n  the plots  against 
V-/VoS2 
computed values of 
(Vmax/Vo,2)u. The lower values of DZq obtained for  these blades are due 
t o  the smaller values of (V-/V1) 
equation (4) (fig. 8(b) ) .  

It is also noted i n  figure 9(b) that good correlation 
The 65-(12Ag14)10 

(fig.  6(b)),  now fall i n  l ine with the other data, because the 
U 

D e s  are smaller than the measured values of 

U given by the empirical variation of 

For angles of attack greater than minimum-loss angle of attwk au, 
the correlation between V&l and the circulation parameter r var ies  
with the magnitude of the angle difference 
i l l u s t r a t ive  plot i n  figure 10, the slope of the variation tends t o  re- 
~ z i ~  fLy& b ~ t  t& in+.ercppt. y d ~ e  c h ~ g e s  d-th 
siderable scat ter  existed i n  the original data, especially at large values 
of a - uu, it was possible t o  derive an average empirical re la t ion fo r  
the increase i n  V-/V1 due t o  increasing angle of attack i n  the form 

a - a". As shown by the 

n, - a.u, AJthoijgh con- 

c 

{F) = a(a - 

F r o m  the data for  the 65-(c~&lo)lO blades, it was found that 
a = 0.0117 and b = 1.43. These constants also sat isfactor i ly  described 
the variations of V&l with a - a* fo r  the 65-(AI)-series blades, 
except that the predicted values are  somewhat higher than the measured 
values fo r  the high-cambered 65- (C&&,} lO blade. However, since some 
question ex is t s  concerning the validity of the observed values of 
Vmaxfvl f o r  these blades (see p.  ll), it w a s  decided t o  use the same 
constants fo r  all blades with the 65-010 basic thickness distribution. 
From the very limited available data f o r  the 10-percent-thick B r i t i s h  C.4  
circular-arc blade, it appears that the effect  of increase i n  angle of 
attack on V-/V1 may be somewhat less  than for  the 65-series blades, 
w i t h  a = 0.007 and b remaining as before. 

It i s  thus established that 

An example of the comparison between measured and derived values of 
Vm/V1 
11. 
becomes 

fo r  the 65-(Cz&1~)10 blades of reference 9 is given i n  figure 
From equations (1) and (7), then,  the equivalent diffusion r a t i o  

coNFIDEN!rIAL 
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where a = 0.0117 fo r  the 65-series blade, and a =e 0.007 f o r  the C.4 
circular-arc blade. 

According t o  equation i8),  the  equivalent diffusion r a t i o  of a blade 
section a t  any angle (a - a ) can be determined, f o r  a given so l id i ty  and 
air  in l e t  angle, if the air out le t  angle 82 i s  known. It i s  proposed N 

kP 
N 

N tha t  p2 be determined i n  the following manner. If it is assumed that 
the  air  turning angle {Afl = P1 - P2) var ies  essent ia l ly  l inear ly  with 
angle of attack i n  the region from minimum loss t o  posit ive stall, then 

(a - a*) 
da P2 = B1- & = 81 -as" - 

where AB* is the turning angle and d(&")/d.u i s  the slope of the 
turning-angle var ia t ion a t  minimum loss. Representative values of 
d(Ap")/du as a function of Q and 81 derived from examination of 
available cascade data axe given i n  figure 12, and values of minimum-loss 
a* and a" are  l i s t e d  i n  tab le  11. Values of Af3" and a" f o r  other 
cambers, so l id i t i e s ,  or air inlet angles can be determined from the avail-  
able turning-angle ru les  f o r  the par t icular  blade shape (e.g., C a r t e r ' s  
r u l e  of re f .  15 fo r  the circular-arc blade). 

-.. 

* 
Plots of ( 6 / ~ ) ~  against equivalent diffusion r a t i o  Deq given by 

(More points are  available f o r  the p lo ts  of ( e / ~ ) ~  
equation (8) i n  conjunction with equation (9) f o r  measured data points 
at angles of attack greater than minimum loss are shown i n  f igure 13 f o r  
a l l  blades. against 
Des than against measured surface V-/Vo, 2,  since velocity-distribution 
data were taken a t  only a f e w  of the test  angles of attack.)  For the  
65-(A10)10 blades (fig.. =(a)),  although a somewhat greater sca t t e r  of the 
data ex is t s  than i n  the  or ig ina l  p lo t  i n  terms of V-/VO,~ i n  figure 
7(a) (primarily because of the sca t t e r  i n  the  
value of D of about 2, as before, delineates the region of possible 
rapid r i s e  i n  loss. 
plo t  f o r  the C.4 circular-arc blades shown i n  figure 13(b). 
a = 0.007 was used i n  the calculation of diffusion r a t i o  fo r  these 
blades. ) 

V&l correlation),  a 

e q  A s i m i l a r  s i tuat ion is  observed i n  the corresponding 
(A value of 

For the 65-(C~&zI~b)10 blades ( f ig .  13(c)), it is  now found that 
jus t  about all the data fall within the l i m i t s  of the 65-(C2&10)10 
blades. 
nitudes of 

The improved correlat ion i s  t h e  result of greater computed mag- 
Des compared with the or ig ina l  values of Vmax/Vo,2 for  the 
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N 
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E 

~= 

high data points i n  figure 7(b).  The higher values of Deq are a re f lec-  
t i o n  pr imar i ly  of the higher computed values of Vmax/V1, as mentioned 
previously. 
a lso f a l l  within the limits of the previous correlations, as indicated 
i n  figure 13(d). 

The data f o r  the 65-(1zAg14b)10 and 65-(12Ag14)10 blades 

Loss Parameter 

A s  indicated previously, cascade loss data have been presented i n  
terms of various parameters. 
more fundamental wake momentum thickness ( e / c ) ,  
nif icant  subst i tute  loss parameter i n  terms of the total-pressure-loss 
coefficient 5 

If the determination or calculation of the 
i s  not feasible ,  a s ig-  

can be established f o r  use i n  cascade loss  analyses. 

Theoretically, fo r  incompressible two-dimensional-cascade flow, from 
equation (C7) of appendix C, the wake momentum thickness i s  given by 

- (10) 

A t  conventional cascade measuring-station locations (1 t o  1.5 chord 
lengths downstream), H2 
of attack, being of the order of 1.08 (appendix D). Thus, f o r  the values 
of (Q/c)2 
terms within the braces w i l l  be comparatively small. The wake momentum 
thickness w i l l  therefore vary primarily with the terms preceding the 
braces. A subs t i tu te  loss parameter Q re f lec t ing  the momentum thick- 
ness (Q/c), 

varies l i t t l e  with blade configuration or angle 

obtained over most of the diffusion range, the vmia t ion  of the 

can thus be established 8s 

A plot  of t h i s  subst i tute  loss parameter against equivalent diffu- 
sion r a t i o  at minimum loss i s  shown i n  f igure 14 t o  i l l u s t r a t e  the ef- 
fectiveness of the parameter. 
it was necessary t o  use fa i red  values of % when loca l  laminar separa- 
t i on  e f fec ts  were apparent. (Differences between the (Q/c), correla- 
t ions of f ig .  7 and the 51 correlations of f i g .  14 are therefore due t o  
possible differences i n  the respective fairing processes as well as t o  
the neglected terms i n  eq. (10) .) 
paraneter i n  figure 14 are  mass-averaged values. 

As i n  the case of the (6/c), correlations,  

The values of total-pressure-loss 
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DISCUSSION OF RESULTS 

Significance of Correlations 

The correlations of wake momentum thickness (Q/c), with upper- 
surface diffusion r a t i o  Vma/V obtained f o r  the available cascade 
data i n  f igures  6 and 7 are considered t o  indicate an essent ia l  confirma- 
t i o n  of the basic diffusion hypothesis for  values of diffusion r a t i o  l e s s  
than about 2.0. 

0,2 

This is based on the observation that, fo r  each fami ly  
tu ro 
N 

of blades, w i t h  minor exceptions, a well-defined relationship independent 
of sol idi ty ,  stagger angle, or camber is  obtained between (Q/c), and 
V&o,z. 
blades a t  higher than minimum-loss angles of attack i n  f igure 7(b),  as 
discussed on p.  11, may not necessarily const i tute  a violation of the 
hypothesis. ) Fundamentally, these r e su l t s  (within t h e i r  l imitations),  
as w e l l  as the r e su l t s  of references 5 and 6, suggest t h a t  the f i r s t -order  
determinant of the boundary-layer growth resul t ing from a diffusion i n  
velocity on a conventional a i r f o i l  surface is the over-all  diffusion on 
the surface V-/V0,2 ra ther  than the specif ic  velocity distribution, 
at leas t  f o r  values of diffusion r a t i o  up t o  about 2. 

The failure of the data f o r  the 65-(1ZA&)10 blade t o  f a l l  w i t h i n  

t o  a more favorable lower-surface velocity dis t r ibut ion)  indicates that 
the  magnitude of the  values of ( Q / C ) ~  i n  the diffusion correlation f o r  
a given blade family w i l l  also depend, at  l ea s t  at  minimum loss,  on the 
diffusion on the  lower surface. 
correlation covering a wide range of blade families m i g h t  require a more 
complete analysis i n  which the diffusion hypothesis is applied t o  both 
the upper and lower surfaces separately. The available loss data, how- 
ever, do not permit an evaluation of the individual boundary-layer con- 
t r ibut ions from each surf ace. 

(The poor correlation observed fo r  some of the 65-(C2&218b)lO 

the l i m i t s  of ( Q / c ) ~  of all the other blades i n  figure 6{b) (a t t r ibuted 1 

The development of a universal diffusion 

The essent ia l ly  universal correlations obtained f o r  {ff/c) 2 when 
p lo t ted  against equivalent diffusion r a t i o  i n  f igures  9 and 13 may 
be of considerable prac t ica l  value i n  tha t  they provide a means of e s t i -  
mating theoretically the magnitude of the loss i n  t o t a l  pressure and the 
stall  regions of conventional blade sections such as those analyzed 
herein. 
ered i n  the following sections. 

Des 

Examples of the use of these plots  f o r  such purposes are consid- 

Estimation of Total-Pressure Loss 

As developed i n  reference 1 {from eq. (lo)), the total-pressure-loss 
coefficient a t  the cascade measuring s ta t ion  is  given by 

CONFIDENTIAL 
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N 
N 
N * 

T- 

5 

I 

- 
t 

i n  which, f o r  conventional measuring-station locations of about X/C = 1.0 
t o  1.5, H2 Thus, f o r  a blade 
of given so l id i ty  and air i n l e t  and out le t  angles, the loss i n  t o t a l  pres- 
sure can be calculated if the  momentum thickness is known. The wake mo- 
mentum thickness (6/c) 2, however, can be estimated from representative 
empirical variations of ( e / ~ ) ~  against 
re la t ions  of figures 9 and 13. For example, f o r  calculation purposes, a 
representative average curve fo r  (Q/c); 
from figure 9 as shown in  figure E. The calculation of Deq (from eq. 
(5)) from the given values of cr, pl, and p2 then yields (G/c)z from 
n: -.-- l c  --a - -_.__ A 3 - -  r,.-,\ 

can be taken constant at 1.08 (appendix D). 

obtained from the data cor- Deq 

at minimum loss can be established * 

I .L&.uc LJ CalK.4 L L U U  CqUi%b.LUU \ L G J .  

I l l u s t r a t ive  calculations of the variations of minimum-loss t o t a l -  
pressure-loss coefficient with blade so l id i ty  u obtained from t h i s  
procedure are  shown i n  figure 16 fo r  a range of values of air i n l e t  angle 
p1 and air turn ing  angle A@*(p2 = - as). The sharp r i s e  i n  loss  
coefficient at the lower sol id i ty  values i n  figure 16 is a r e su l t  of the 
rapid increase i n  diffusion r a t i o  as sol idi ty  i s  reduced. 
the curves indicate the points a t  which the diffusion r a t i o  is equal t o  
2.0. (At  p1 = 60°, I& is greater than 2.0 at all so l id i t i e s  f o r  
A@* = 30° and 40°, f ig .  16(c) . )  

The c i rc les  on 

In  a s i m i l a r  manner, procedures can be established for estimating 
the total-pressure loss at angles of attack greater than the minimum-loss 
point by the use of representative momentum-thlckness - diffusion curves 
from figure 7 or  from figure 13 and the equivalent diffusion r a t i o  of 
equation (8). 

When cascade blade sections are used as the elements of a compressor 
stage, the uiagnitude of the minimum-loss coefficient is not the sole  
measure of the effectiveness of the  section. "he section adiabatic effi- 
ciency, f o r  example, w i l l  depend also on the  work input across the element 
and the dynamic head of the r e l a t ive  inflow. Furthermore, the selection 
of a design so l id i ty  w i l l  generally also be based on consideration of the 
unstalled or useful range of operation of the section, siuce this fac tor  
will also vary with so l id i ty .  The influence of so l id i ty  on the  unstalled 
range of a blade is i l l u s t r a t ed  i n  a l a t e r  section. 

Blade S t a l l  

Various concepts and definit ions of blade stall have been used in  
cascade practice.  In general, blade stall re fers  t o  the cond.ition where 



18 CONFIDENTIAL NACA RM E57A28 

a marked deterioration of the flow occurs as a r e su l t  of the growth o r  
separation of the boundary layer on one of the blade surfaces. Specifi- 
cally,  blade s ta l l  has been defined t o  occur, f o r  example, when the loss  
a t ta ins  twice i ts  minimum value, when a re la t ive ly  marked decrease i n  
turning angle i s  observed, or when a cer ta in  r a t e  of increase i n  loss is 
attained. 
correlations presented i n  figures 6, 7, 9, and 13, if  the high values of 
( 6 / ~ ) ~  at  Vmax/Vo,B o r  Deq greater than about 2 m e  interpreted as 
representing s ta l led  flow. Thus, a s t a l l i n g  c r i te r ion  at  minimum loss  
as  well as at greater angles of attack can be established as the upper- 
surface diffusion r a t i o  i n  e i ther  i t s  specif ic  or equivalent form (eq. 
(8)) .  
above which a large r i s e  i n  loss i s  possible f o r  these blades, i s  indi-  
cated to  be about 2 fo r  all the  low-speed data considered. The value 
of 2 can also be adopted as the s t a l l i ng  r a t i o  i n  terms of measured 
Vmax/Vo,2 f o r  a l l  blades if the deviations of the data fo r  the 65- 
(C242I8b)lO blades i n  figure 7(b) can be discounted. 
value of Vmax/Vo,z 
r e su l t s  obtained i n  reference 7. 

A more universal indication of blade s ta l l  is suggested by the 

The s t a l l i ng  diffusion ra t io ,  defined herein as the value of Deq 

This l imiting 
fo r  65-(C,&lo)lO blades is i n  agreement w i t h  the 

A comparable indication of the lower-surface diffusion r a t i o  asso- 
c ia ted w i t h  blade s ta l l  at l o w  angles of attack (negative s ta l l )  could 
not be investigated because the available data did not show lower-surface 
peak velocit ies considerably greater than the upper-surface peak veloci- 
ties. However, it is  believed that a s i m i l a r  l imiting diffusion r a t i o  
ex i s t s  fo r  the lower surface at negative stall .  

Estimation of Unstalled Range 

The equations for  equivalent diffusion r a t i o  developed i n  the empir- 

A t  the s t a l l ed  condi- 
i c a l  analysis can be used t o  obtain an estimate of the low-speed unstalled 
range of operation of conventional blade sections. 
t ion,  from equation (a),  

where 
to  positive s t a l l ,  hereinafter called the half range. 
t i on  at fixed a i r  i n l e t  angle, the equivalent diffusion r a t i o  at s t a l l  

as - 0-F is  the angle-of-attack range from reference minimum 103s 
For cascade opera- 

can be expressed i n  terms of conditions a t  minimum loss (from eq. Deq,s 
(9)) as 

1 
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Thus, for  a fixed value o f  
range 
Calculated variations of half range w i t h  43" and u a r e  shown i n  f igure 
1 7  for  DeqYs = 2.0 and a = 0.0117. 

Deq,s and given values of l3; and (I, the half 
as - a" can be computed as a function of Bz * and consequently 43". 

The unstalled half range can also be determined as a function of the 
diffusion leve l  a t  minimum loss,  since DZq (eq. (5))  can be coquted from 

De¶ = 2.0 are  shown i n  f igure 18 t o  i l l u s t r a t e  the e f fec t  
of minimum-loss or "design" diffusion on unstalled range a t  fixed a i r  i n l e t  
angle. 

u u the q u a n t i t i e s  i n  equation (14). Plots of us - a* against DZq fo r  
5: and a = 0.0117 

If the values of half range obtained are  multiplied by 2, the range 

loss coefficient on the low-angle side is obtained. Furthermore, if this 
point at low u can be regarded as the point of negative stall, then the 
complete unstalled range of operation can be obtained from equations (13) 
and (14). 

of angle of attmk fz-om pslt i - ;~ = k c 1  to a - 7 - l - r -  cf e q t ~ l  tnf,&-nvoRsirre- c- ---- v --b 

c 

I n  the present calculations, blade stall w a s  taken t o  occur at a 
diffusion r a t i o  of 2.0, since it represented the region of possible large 
r i s e  i n  loss.  
larger  values of diffusion r a t i o  were noted without any sudden r i s e  i n  
loss. 
cascade sections may therefore exist, if the various factors affecting the 
loss  var ia t ion i n  t h i s  region can be determined and controlled. 

I n  many cases (figs. 7 and 13), however, considerably 

A potent ia l  f o r  increasing the unstalled range of operation of 

Limitations and Restrictions 

The r e su l t s  obtained f r o m  the loss correlations presented herein 
necessarily contain several limitations and r e s t r i c t ions  pertaining t o  
the blade surface velocity distributions (as affected by blade shape and 
maximum thickness), the flow Reynolds number, the flow inlet Mach number, 
and the two-dimensionality of the  flow. It i s  desirable that these l i m i -  
t a t ions  be kept i n  mind i n  any application or extension of the resu l t s .  

Blade shape. - An important f a c t o r  determined by blade shape (i.e., 
thickness and mean-caniber-line distributions) that was  revealed t o  in- 
fluence the correlation of momentum thickness with upper-surface diffusion 
r a t i o  is the  lower-surface velocity distribution. The influence of a more 
favorable lower-surface diffusion i n  producing a smaller wake momentum 
thickness fo r  a given value of upper-surface diffusion r a t i o  has already 
been noted i n  the correlation fo r  the  65-(12AgIq)lO blade at minimum loss 

CONFIDENTIAL 
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- 
i n  figure 6(b) .  Thus, blade shapes tha t  produce lower-surface velocity 
distributions markedly different  from those of the reference blades may 
not experience s i m i l a r  upper-surface diffusion correlations.  The e f fec t  
of different lower-surface diffusion, however, w i l l  generally tend t o  
decrease w i t h  increasing angle of attack or  diffusion r a t i o  because of 
the reduced contribution of the lower-surface flow t o  the t o t a l  blade 
wake for these conditions. 

It might also be expected tha t  the chordwise location of the upper- 
surface peak velocity a f fec ts  the diffusion correlation because of the 
variation i n  i n i t i a l  boundary-layer state tha t  m i g h t  occur at the start 
of the  diffusion. 
t o  occur between the leading edge and the midchord point at minimum-loss 
angle of attack, no distinguishable trends could be noted that were due 
t o  these different  locations. However, t h i s  may not always be the case. 

Although the  peak ve loc i t ies  i n  the data were observed 

P 
N 
N 
N 

Finally, it is noted t h a t  the correlations i n  terms of equivalent 
d i f f u s i o n  r a t i o  ( f i g s .  9 and 13) do not appear t o  be sensi t ive to  blade 
shape because of the previously discussed compensating e f fec ts  of the re la -  
t ion  between the measured and empirical values of Vmax/Vl ( f ig .  8 ( b ) ) .  

Maximum thickness. - The empirical correlations as well as the pre- 
vious discussions are based on blades of a f ixed r a t i o  of maximum- 

character is t ics  of a blade section will vary with maximum blade thickness 
because of the influence of the thickness on the maximum surface 
veloci t ies .  

thickness t o  chord length of 0.10. Theoretically, the loss and s ta l l  -4 

A t  minimum loss, the var ia t ion of calculated ( 6 / ~ ) 2  with measured 
upper-surface V&Vo 2 
increase i n  wake momentum thickness w i t h  blade maximum thickness as shown 
i n  figure 19. Apparently, fac tors  other than the increased upper-surface 
diffusion r a t i o  (i .e. ,  poorer lower-surface velocity dis t r ibut ion and 
larger  trailing-edge thickness r a t i o )  are involved i n  the increase i n  
minimum-loss (e/c), with m a x i m u m  thickness. These data suggest that, 
f o r  purposes of loss estimation, a family of representative curves of 
(O/c), against Vmax/V0,2 may be constructed for  various maximum thick- 
ness, i n  which the minimum-loss diffusion r a t i o  f o r  all thickness i s  cal-  
culated as before fo r  the 10-percent-thick section (eq. (5)). 

f o r  the loss data of reference 16 indicates an 

It is fur ther  noted i n  the l imited experirnental data of reference 
16 that the value of V&o,z 
tends to  increase as maximum thickness is reduced. However, since the 
r a t e  of increase of V& with a tends t o  increase with reduced 
thickness, a net decrease i n  unstalled range i s  obtained as maximum 
thickness is decreased f o r  these data. 

at which a sharp rise i n  (e/c>z occurs 

0,2 
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In  view of the presence of irregularities i n  the data of reference 
16 due t o  local  laminar separation effects, however, it is not known t o  
w h a t  extent the specific changes i n  loss and stall characterist ics ob- 
served f o r  the changes i n  m a x i m u m  thickness of the 65-(12A10)10 blade i n  
reference 16 represent universal trends f o r  all cascade sections. 
eral maximum-thickness corrections t o  the loss and stall  chazacterist ics 
of the 10-percent-thick sections as derived herein are therefore not 
currently indicated. 

Gen- 

Reynolds number. - Since the loss and stall  characterist ics of cas- 
cade sections depend on the surface boundary-layer development, it i s  
expected that these characterist ics will be influenced by such factors as 
blade-chord Reynolds number, free-stream turbulence, and blade surface 
roughness. 
numbers between 2.0X105 and 4.45~10~. 
mompnf.1-1.m thicknesses a ~ d  possibly lk rgpr  vnl~es nf st.allin4 il i tf’isinn 
r a t i o  w i l l  occur at higher Reynolds nunibers and turbulence levels  (espe- 
c ia l ly  if local  laminar separation effects are no longer present}, but 
no specific indication of the magnitudes involved is  available. 

The data of the present analysis are res t r ic ted  t o  Reynolds 
It i s  presumed that reduced wake 

Suction-surface diffusion ra t ios  a t  separation for  isolated a i r f o i l s  

However, since the definition of separation i n  reference 
w e r e  found t o  be between 2.3 and 2.9 a t  a chord Reynolds number of 6x106 
i n  reference 6. 
6 may not correspond t o  the definition of stall  considered herein, it is 
not known t o  w h a t  extent th i s  apparent increase i n  stalling diffusion 
r a t i o  compared w i t h  the cascade a i r f o i l  can be at t r ibuted t o  increased 
Reynolds number. 

Compressibility. - It is w e l l  known that, as inlet Mach number in- 
creases, compressibility causes an increase i n  the surface diffusion 
r a t io s  of a given cascade configuration. 
reduced range of unstalled operation result .  
obtained herein are therefore not representative of high Mach number 
performance. 

Increased wake thickness and 
The low-speed correlations 

Specifically, an extension of the current correlation approach t o  
high subsonic Mach numbers ( in  absence of shock waves) w i l l  involve the 
establishment of fur ther  empirical relations for V a l  over a range 
of inlet Mach numbers. 
(axial  velocit ies are no longer equal at inlet  and out le t  i n  a compressible 
cascade flow 
between (O/c i and needs t o  be derived. 

The compressibility effect on the V f i ~ , ~  r a t i o  

must also be accounted for, and a compressible re la t ion  

When shock waves are present on the blade surfaces at high subsonic 
Mach numbers, the theoret ical  low-speed model of the out le t  f l o w  as e8- 
tablished i n  figure 2 is no longer applicable. Free-stream t o t a l  p s -  
sure is  no longer constant across the blade spacing, and the location of 
the points of maximum velocity can vary considerably along the surface, 
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depending on blade sol idi ty ,  stagger, and back pressure. In  such event, 
the  presence of generally greater i n i t i a l  boundary-layer thicknesses and 
possible complex interaction phenomena a t  the start of the velocity d i f -  
fusion requires a complete reevaluation of the diffusion concept and r e -  
la t ions .  Furthermore, i n  the  presence of shock waves, the subst i tute  
mass-averaged total-pressure-loss parameter 52 of equation (11) will no 
longer represent the blade-wake momentum thickness. 

Two-dimensionality. - Another l imitat ion of the  derived correlations + 
N 

pertains  t o  t h e i r  appl icabi l i ty  primarily t o  two-dimensional flows. In co 
axial-flow blade rows, various three-dimensional e f f ec t s  such as second- N 
ary flows, spanwise boundary-layer flows, and changes i n  r a t i o  of i n l e t  
t o  out le t  axial velocity and streamline radius occur which can ma te r i a l ly  
a f fec t  the loss  and stall  re la t ions  of a given blade section. In  an 
elementary way, changes i n  axial velocity r a t i o  can be introduced i n  the 
current expressions for  equivalent diffusion r a t i o  by considering now tha t  

Similarly, change i n  streamline radius across the section can be included 
by considering the circulat ion term i n  terms of r2Vy,2 and r lVy , l .  
However, only comparative experimental investigations can indicate t o  
w h a t  extent the current loss and s ta l l  re la t ions  can be effectively ap- 
p l i ed  t o  sections i n  compressor blade rows. 

SUMMARY OF RESULTS 

The preceding analysis of low-speed-cascade data has shown that sig- 
nif icant  experimental correlation between loss  and velocity diffusion can 
be obtained f o r  several conventional 10-percent-thick low-speed compressor 
blade sections i f  the loss  i s  expressed i n  terms of the r a t i o  of wake mo- 
mentum thickness t o  chord length and the diffusion i s  expressed i n  terms 
of the  r a t i o  of measured m a x i m u m  upper-surface velocity t o  out le t  velocity.  
A well-defined relationship between wake momentum thickness and upper- 
surface diffusion r a t i o  w a s  obtained fo r  a wide range of blade configura- 
t i ons  for values of diffusion r a t i o  up t o  about 2 i n  most cases, a f t e r  
which a wide sca t t e r  of the data  is observed. It was  also indicated that 
the  form of the lower-surface velocity dis t r ibut ion and the magnitude of 
the  maximum blade thickness can influence the magnitude of the proportion- 
a l i t y  between wake momentum thickness and upper-surface diffusion r a t i o .  
Fundamentally, these r e su l t s  (within the i r  l imitat ions)  suggest that  the 
f i rs t -order  determinant of the boundary-layer growth resu l t ing  from a d i f -  
fusion i n  velocity on a conventional blade surface is  the over-all  diffusion 
on the surface Vmx/Vo,2 ra ther  than the specific velocity distribution, 
a t  l e a s t  for  va lues  of diffusion r a t i o  up t o  about 2 .  

* 

- 
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cu 
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dc 

From derived e q i r i c a l  relations,  it w a s  possible t o  establish an 
equivalent diffusion r a t i o  expressible i n  terms of the velocity t r iangle  
and blade so l id i ty .  Within the res t r ic t ions  of the data (range of blade 
configurations tested, range of Reynolds number, low-speed two-dimensional 
flow), an essent ia l ly  universal correlation between wake momentum thick- 
ness and equivalent diffusion r a t i o  was obtained at angles of a t tack at 
minimum loss  and greater f o r  a l l  blade configurations. The poss ib i l i t y  
of blade s t a l l  a t  minimum-loss and greater angles of attack, as evidenced 
by a sharp r i s e  i n  wake momentum thickness,  was indicated t o  occur when- 
ever the equivalent diffusion r a t i o  a t ta ins  a value of about 2. 

With the use of the equivalent diffusion r a t io ,  means f o r  estimating 
the low-speed total-pressure loss and the unstalled range of operation of 
s i m i l a r  conventional cascade sections as functions of so l id i ty ,  air  i n l e t  
angle, and air turning angle were established. Calculations showed that 
minimum totai-pressure loss  generally decreased w i t h  decreasing so l id i ty  
u n t i l  a value was reached at  which the diffusion becomes excessive, and 
the loss then r i s e s  sharply. 
values of total-pressure loss occurred at s o l i d i t i e s  less than unity. 
The range of angle of at tack from minimum loss t o  posit ive stall  was 
found t o  be a primary function of the equivalent diffusion r a t i o  at min- 
i m u m  loss, calculated range decreasing w i t h  increasing minimum-loss 
diffusion rat io. 

For normal design ranges, the lowest 

Lewis  Fl ight  Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, November 23, 1956 
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CALX=ULATION OF 

APPENDIX A 

!OMENTUM THICKNESS FROM WAKE FORCE COEFFICIENT 

The wake force coefficient $ i s  defined i n  terms of i n l e t  ,I 
dynamic head (ref ,  9) as 

where F, 
tum difference between the  free-stream flow and the wake flow. From 
equation (6) of reference 9 (using the coordinate .system of f i g .  l), 

i s  the wake momentum force per uni t  span expressing the  momen- 

Fw =y;; PVZ,2(V0,2 - v2) dY (A2 1 

where the subscript 0 r e fe r s  t o  free-stream conditions outside the  
wake. Substitution of equation (A2) in to  equation ( A l )  f o r  constant 
angle across the wake then yields 

J - S I 2  
%,la (A3 1 

of the  measuring s t a t ion  (fig. 2) ,  the  in tegra l  term i n  equation 
Since the free-stream velocity is constant between the  wakes i n  the 

the  wake momentum thickness €Iy. Thus, equation (A3) becomes 

Since the  plane of integration i n  the equation developments (cascade 
ou t l e t  measuring s ta t ion)  is suf f ic ien t ly  fa r  downstream (of the order 
of 1 t o  1.5 chord lengths behind the blade), changes i n  wake character- 
i s t i c s  along the direct ion of flow w i l l  be very small (ref. 2) .  
sequently, the  wake thicknesses normal t o  the  axial direct ion (subscript 

Con- 

c 

b 
kJ 
N 
N 

4 

.. 
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8 

f 

y)  can be expressed BS the  conventional thicknesses normal t o  the out le t  
flow (no subscript) as 

Thus, from equations (A4) and (AS), the momentum-thickness r a t i o  is  given 
by 

Equation (A6) points t o  me of the mador d i f f i cu l t i e s  i n  the accurate 
determination of the momentum thickness f r o m  the measured loss coeffi- 
c ients ,  namely, the correct values for free-stream velocity r a t i o  
t h a t  existed in  the various cascade tunnels. Since 

092 Vfi 

it is seen tha t  the velocity r a t i o  i s  a function not only of the measured 
a i r  angles but also of the free-stream axia l  velocity r a t i o  across the 
blade. The ax ia l  velocity r a t i o  of equation (A7) is a measure of the  
degree t o  which two-dimensional f l a w  has been achieved across the cascade. 
I n  low-speed flow t h i s  r a t i o  is frequently referred t o  as t he  cascade 
contraction r a t io .  Values of contraction ratio have not generally been 
ident i f ied i n  conventional cascade performance evaluations. It w a s  there- 
fore  necessary i n  the developments t o  make an assumption concerning the  
two-dimensionality of the cascade tunnels i n  question i n  order t o  evaluate 
the ax ia l  velocity ra t io .  
exercised f o r  a l l  of the cascade data (refs. 9 t o  12 ) ,  it w a s  assumed 
that two-dimensional flow w a s  obtained i n  the cascade f o r  a l l  
configurations. 

Since good two-dimensionality control WBS 

For two-dimensional incompressible flow w i t h  uniform upstream con- 
dit ions,  continuity requires that 
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Now, equation (A8)  can be expressed as 

(A9 1 

so tha t ,  with the in tegra l  term being equal t o  the wake displacement 
thickness 9 (fig.  Z) ,  it follows t ha t  P 

N 
N 
N 

o r ,  from equation (A5) and the def ini t ions of form fac tor  
so l id i ty  u = CIS, 

H = S*/e and 

Substitution of equation (A10) into equation (A6) then yields f o r  two- 
dimensional flow . 

end, by quadratic solution, 

where 

For wake coefficients expressed i n  terms of some other reference 
condition (e.@;. , vector mean o r  ou t le t  conditions), re la t ions  equivalent 
t o  equation (A12) can be obtained from the use of the equal i ty  * 
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. 

N 
N 
N 
dr 

M 
-0 
d 
P 

. 

Values of H2 used i n  the calculations of ( 6 1 ~ ) ~  .based on the wake 
coefficient and the other loss parameters were determined according t o  
the considerations presented in  appendix D. 
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APPENDIX B 

NACA RM E57A28 

CALCULATION OF MOMENTUM THICKNESS FROM DRAG COEFFICIENT 

The drag coefficient i s  defined as the r a t i o  of the drag force per 
un i t  blade area t o  some reference dynamic head as 

Fn 

where FD is the drag force per uni t  blade span. The drag force i n  in- 
compressible flow is evaluated as the component of the  t o t a l  force p a r a l l e l  
t o  the  vector mean velocity between blade i n l e t  (far upstream) and blade 
out le t  (far downstream), as indicated i n  f igure 20. 
generally used are the i n l e t  velocity, the out le t  velocity, and the  vector 
mean velocity between i n l e t  and out le t .  The t o t a l  blade force is  computed 
from the ax ia l  and tangential  force components, which are determined from 
measured veloci t ies  and pressures. 

Reference veloci t ies  

I n  current cascade practice,  different  methods of calculating the 
drag force exis t ,  depending on whether the e f fec ts  of the veloci ty  defect 
i n  the blade wake are  considered i n  the evaluation of the t o t a l  force F 
and the vector mean direction & (as discussed i n  re f .  1 2 ) .  

present analysis, it was necessary t o  consider t ha t  a l l  reported drag 
coefficients were the theoret ical ly  correct values. 

I n  the  

Because of the  complex re la t ion  between the drag force and the 
tangential  and ax ia l  force components (which are  determined from measured 
velocit ies and pressures) a t  the measuring s ta t ion ,  it was not possible 
t o  obtain d i r ec t ly  a re la t ion  between drag coefficient and wake momentum- 
thickness r a t i o .  
an indirect  manner as follows. 
t o  be the theore t ica l ly  correct ones, they w i l l  be independent of distance 
behind the blade. 
subscript - )  i s  considered such t h a t  the  wakes have completely mixed 
w i t h  the  free-stream flow, the  veloci t ies ,  pressures, and angles w i l l  all 
be uniform across the complete blade spacing. 

Equations fo r  ( Q / C ) ~  therefore had t o  be developed i n  
Since the drag coefficients are assumed 

Thus, if a point suf f ic ien t ly  far downstream (station 

For uniform out le t  conditions, from f igure 20, the drag force i s  
given by 

FD - Fy s i n  pm - F, cos 

ri 
Is 
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w- 

Since two-dimensional flow is  assumed, the axial  velocit ies a t  i n l e t  and 
out le t  w i l l  be equal. The axia l  force FZ then r e su l t s  only from t he  
change i n  s t a t i c  pressure across the blade, which in  the presence of 
losses is  given by 

or 

The force i n  the tangential  direction is determined by the momentum change 
i n  the tangential  direction, or 

Equation (B2) then becomes f’rom equations (B3) and (B4) 

With (from f ig .  20) 

and 

v: - v2, = v;,1 - v;,.. 
substi tution of these terms 

Dividing equation (B7) 
7 3  

in to  equation (E) reduces tha t  equation t o  

by free-stream dynamic head at the outlet 

measuring s t a t ion  $ I V ~ , ~ ,  w i t h  c/s = u, gives 

OFD 
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By definition, the drag coefficient based on out le t  velocity is given by 

so that, f i na l ly ,  

From the  developments of reference 1, it can be shown tha t  the loss 
f o r  complete mixing far downstream can be re la ted  t o  the wake momentum- 
thickness r a t i o  a t  the measuring s ta t ion  (s ta t ion 2)  by the equation 

It is  fur ther  shown i n  reference 1 that, if the wake form fac to r  i s  not 
greater than about 1.2 (which is  the case f o r  the cascade data considered 
herein),  the term involving 
can be neglected, so  t ha t  f o r  p rac t i ca l  purposes 

sin2p2 w i t h i n  the braces i n  equation (B10) 

From equations (B9) and (B11) it i s  then found tha t  

(a), = 

S t r i c t l y  speaking, i n  equation (B12), & is  determined i n  terms of ou t le t  
conditions f a r  downstream where complete mixing has occurred (s ta t ion m).  

However, fo r  prac t ica l  purposes, it w a s  suff ic ient  t o  assume t h a t  8, - p2 
(ref.  2)  so that, from equation (B6), 

CONFUSENTIAL 
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For the  drag coefficient based on i n l e t  dynamic head, division of 
1 2  equation (B7) by p V 1  yields 

- - "D, 1 
9," - cos & 

For two-dimensional flow, from reference 1, 

Substi tution of equation (B15) in to  equation (B14) then permits a quad- 
r a t i c  solution f o r  ( o / c ) ~  t o  give 

where 

For the drag  coefficient based on t h e  vector mean velocity Vm, 

or, since from continuity V~/V, = cos pm/cos pl, 
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The solution f o r  (e/c), i s  then given by 

where 
tb 
N 
N 
N 

CONFIDENTIAL 
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APPENDIX C 

C-TION OF MOMEZTUM THICKNESS FROM TCTrALPRESSURE-LOGS C O W I C I E N T  

The total-pressure-loss coefficient based on some reference dynamic 
head is  defined i n  low speed as 

where (&)2 

measuring station. 
plane i s  expressed in  terms of e i ther  an mea  average given by 

is the average loss i n  t o t a l  pressure up t o  the  cascade 
The average loss in t o t a l  pressure i n  the  measuring 

o r  a mass average given by 

For reference 1, the mass-averaged total-pressure-loss coefficient 
based on out le t  dynamic head (subscript 
wake character is t ics  a t  the measuring s ta t ion  by 

2)  is  given i n  terms of the 

from which is obtained for the momentum-thickness r a t i o  

c 

.- 
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For loss coefficients based on In l e t  velocity, 

NACA RM E57A28 

where the free-stream velocity r a t i o  Vo,2 /V 

i s  evaluated according t o  equation (A10). 

f o r  two-dimensional flow 

Substi tution of equation (A10) 
in to  equation (C6) and equation (C6) into (C4) then yields P 

In view of the complicated cubic equation involved i n  the expl ic i t  solu- 
t i o n  for  (e/&, f o r  prac t ica l  purposes an i te ra t ion  solution of equation 
((27) can be used. 
can be taken t o  be equal t o  the product of a l l  the terms outside the  
brackets i n  equation (C7).  
produce resu l t s  of acceptable accuracy. 

For the  i n i t i a l  calculation, (B/c)2 within the brackets 

Three i te ra t ions  are generally suff ic ient  t o  

In  cascade practice,  the loss i n  t o t a l  pressure i s  generally pre- 
sented as an area average of the defect i n  t o t a l  pressure i n  the wake as 
defined by equation (C2). 
area-averaged loss t o  a mass-averaged loss f o r  use i n  the equations f o r  
(e/. 1 2, where 

It is  necessary, therefore, t o  convert the 

Curves of the r a t i o  of mass-averaged t o  area-averaged total-pressure-loss 
coefficient - ? E A  derived from experimental and theore t ica l  considera- 
t ions  were determined i n  reference 2 as a function of downstream distance 
x/c S/Sn. 
The derived r a t io s  are shown i n  figure 21. 

and the r a t i o  of f u l l  wake thickness t o  normal blade spacing 

Since values of 6/sn were not known fo r  the available cascade loss 
data, they can be estimated according t o  the following considerations. 
Examination of experimental data showed t h a t  the r a t i o  of wake momentum 
thickness t o  f u l l  thickness could be represented on the average by the 
curve i n  figure 22. The derived curve i n  f igure 22 w a s  obtained from the 
data of reference 2. Values of 6/sn f o r  a given cascade geometry and -. 

-" 
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X/C location were then obtained from assumed values of 
r e  l a t  ion 

e/. from the  

i n  conjunction w i t h  f igure 22. Several t r i a l  values of e/c are  used t o  
determine t r i a l  values of i n  the calculation of 6/c. Correspond- 
ence of the t r i a l  and computed values of O/c then determines the correct 
value of e/c. 

CONFIDENTIAL 
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APPENDIX D 

WAKE FORM FACTOR 

I n  the absence of specific experimental data concerning the magni- 
tudes of the wake form fac tors  encountered i n  cascade flow, it w a s  nee- 
essary t o  assume representative values of 
t i o n  of (e/c), 

decreases rapidly with distance downstream of the  cascade x/c depend- 
ing on the i n i t i a l  v a l u e  of form fac tor  a t  the  t r a i l i n g  edge For 
a range of values of from 1.4 t o  3.0 (representing zero diffusion 
flow t o  badly separated flow), the corresponding range of values of 
was quite small a t  the conventional measuring-station locations of 
x/c = 1 and 1.5. The poss ib i l i ty  of using one average value of H2 a t  
a given s ta t ion location over a wide range of cascade geometries and 
angles of a t tack (and consequently H t e )  w a s  therefore suggested. Exam- 
ination of  the various conversion equations used and the l i m i t s  o f  var -  
i a t i on  of H2 given by the empirical re la t ions  of reference 2 revealed 
t h a t  errors o f  about k1 percent o r  less i n  the magnitude of ( 0 / ~ ) ~  
be introduced by the  use of a constant value of a t  a given s ta t ion  
location f o r  the l o s s  data considered. Values of H2 selected for the 
calculations of were 1.08 a t  x/c = 1 and 1.07 a t  x/c = 1.5. 

H2 f o r  use i n  the calcula- 
over the range of i n t e re s t  of the various cascade sec- tP 

to' co 
t ions .  Reference 2 showed empirically tha t  cascade wake form fac tor  H N 

%e. 
%e 

H 

might 

H2 

' 
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APPEXDIX E 

CALCULATION OF TOTAL-PRESSU€B-LQSS COEFFICm 

For the computations of total-pressure-loss coefficient from m e a s -  
ured drag coefficients, it was noted from the resu l t s  of reference 2 
that ,  a t  the measuring-station locations of the available cascade data 
(1 t o  1.5 chord lengths downstream), the total-pressure-loss coefficient 
a t  the s ta t ion Cl should be very nearly equal t o  the loss f o r  complete 
mixing El,-. Thus, the total-pressure-loss coefficient a t  the meas- 
uring s ta t ion was determined from equation (B14) and (B18) as 

- a C D , l  ( E l )  
- 
a1 - 

cos pm 

a- 

- 
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TABU 11. - ANGLE OF ATTACK AND TURNING ANGLE 

AT REFERENCE MINIMUM LOSS 

(a) NACA 65-(C20A10)10 blades of reference 9 (blade 1) 

= 45O So l i d i t  y, 
0 

0.5 

Desigr 
l i f t  
coeff i 
c ien t  , 

5 0  
deg deg 1'- P 

N 
N 
N 

4 
12 
18 

4.5 
10.1 
12.c 

6.1 
12.1 
17.5 

3.5 
7.1 
9.6 

13.6 
17.3 
18.0 
2 1 . 1  
24.2 
26.2 

8.5 

16.6 

22.5 

- 

- 

- 

---- 
---- 

4.0 
12.2 
16.8 

6.0 
16.6 
26.2 

___ 

4.c 
7.7 

1o.c 
8.7 

1 3 . C  
~ 

0.75 

1.00 

4 
1 2  
18 

6.1 
10. E 
14.5 

4.8 
14.3 
20.2 

0 
4 
8 

12 
15 
18 
2 1  
24 
27 

3.c 
7.1 

10.7 
14. E 
17.E 
20.5 
e--- 

---- ---- 
__ 

8. C 

16.6 

22.5 

4.0 
8.5 

13.2 
19.1 
21.2 
24.0 

-e-- 

---- 
- 

---- ---- 

1.8 
8.7 

15.2 
20.9 
26.8 
29.6 
34.5 
39.6 
12.6 

5. c 
7.5 

LO. 2 
13.6 
14.3 
15.0 
17.6 ---- 
-e-- 

1.8 
7.7 

12.8 
18.6 
21.7 
23.2 
26.3 ---- 
---- 
- 

8.9 

21.4 

28.0 

3.7 
11.6 
18.7 
26.8 
33.0 
38.9 
13.7 
$8.0 

---- 
---- 
- 

- 

4 
8 

12 
15 
18 

9.5 

L6.1 

L9.0 

7 .O 
LO.0 
L3.6 
L8.1 
L8.7 
22.5 
!3.6 
25.7 

I--- 

I--- 

- 

6.8 
12.2 
15.9 
17.9 ---- 

1.25 

1.50 0 
4 
8 

12 
15 

3.4 
L1.6 
L9.8 
50.0 
54.8 
Ll. 0 .--- 
.--- 

5.0 
9.1 

12.6 
17.6 
20.8 
24.5 
26.6 
28.2 - 

3.7 
11.6 
18.7 
26.8 
33.0 
38.9 
L3.7 
L8.0 

2.7 
8.2 

L3.3 
18.6 
2 . 0  
I--- 

---- 
I--- 

CONFIDENTIAL 



NACA RM F57A28 CONFIDENTIAL 41 

(40A218b 18 

1.5 4 
8 
12 
18 

IN  cu cu 

5 
(c20%14b 

( cZ&614) 

I 

6 I .I- 

1.0 12 
12 

1.0 12 
1.5 12 

.- 

*-  

Blade  

TAB= 11. - Concluded. ANGU OF ATTACK AND TURNING ANGLE 

AT REFERENCE MINIMUM LOSS 

(b) NACA 65-(AI)10 blades of reference 10 

A i r  i n l e t  Angle of A i r  turning 
angle, $f, attack, u*, angle, A$*, 

deg deg deg 

Blade Solidity,  Design 

coeff i- I, c ient  , 

2 

(1OC.4/3OC50) 

3 
(lOC.4/31C50) 

30 14.5 20.6 

45 14.0 19.7 

60 13.0 16.8 

42.3 12.8 19.0 

8, = 30° 
I 

%*, 
2% 
- 

6.6 
8.1 

13.0 
9.8 

8.5 
10.4 
12.0 
16.0 - 
---- 

43*, 
3% 

9.3 
14.5 
21.4 
29.0 

12.2 
18.9 
26.3 
38.0 

---- 

I L  L 

J", e*, a*, 
leg deg deg 

12.4 25.2 12.4 

10.4 l3.0 10.9 
12.0 19.4 12.9 
13.8 25.5 12.5 
16.4 34.3 16.0 

--e- 11.0 
17.2 26.3 ---- 

---- 

---- ---- 15.2 
21.0 27.7 ---- 

(c) C.4 Circular-arc blades of references 11 and 12 
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Figure 1. - Schematic representation of wake development in flow 
about cascade blade sections. 
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thickness : -61,Y 
Displacement $ = G,y + 6 7 , ~  = /  (1 - 6) 

8 = eu + 81 = ey cos B 

Figure 2. - Model variation of velocity and pressure i n  
plane normal t o  axial direction and definit ions of wake 
properties. (Subscript y refers t o  properties in 
plane normal t o  ax ia l  direction; no subscript indicates 
properties i n  plane normal to outlet  flow.) 
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lb 
N 
N 
N 

Angle of attack, a, deg 

Figure 3. - Illustrative variation of measured and computed loss parameters and 
definition of reference minimum loss. 
angle, 70'; solidity, 1.5 (ref. 9). 

Blade, NACA 65-( lalo) 10; air inlet 

t 
24 

Figure 4. - Illustrative momentum-thickness variation in presence 
Blade, NACA 65-(1a10)10; air in- of local laminar separation. 

let angle, 60'; solidity, 1.0 (ref. 9). 

CONFIDENTIAL 

-. 
-. 



mACA RM E 5 7 A 2 8  CONFIDENTIAL . 45 

.- 

* -  

% 

a, 
d 

i7 
2 
-2 
0 

I cu 

P 
1 
.w. 

k z -  
4 "  
5 .  

a, a -- 
ld0 
dIn 

P 
U 

..r 
0 
0 
(0 

% 

a, 

E7 
+ 
Q) 
d 
C 
d 

k 
rl 
ld 
.* 
0 

k 
0 

+4 

d 
r-l 

J 
m 

* .  
m 
s1 
0 
-P 

x 
c, 



46 

N 0 
0 

CD 
0 

C0I"IDENTIAL NACA RM E57A28 

N 

ri 
4 
ri 

IA/A 

... 
0 
% . 
Q) 

3 d 
+.' 
Q) 
rl 
6 
d 

k 
r( 
d 

0 
rl 

... 

-. 
-. 

CONFIDEPJTIAL 



NACA RM E57A28 c0mlDmIAL 47 . 

(u 
(u 
(u 
dc 

Angle of attack, a, deg 

C o Upper s u r f a c e 1  
Lower surface 

0 20 40 60 80 100 
Percent chord 

( e )  Blade, NACA 65-(BAZIBb)10; a i r  i n l e t  angle, 45'; sol idi ty ,  1.0 (ref .  10). 

Figure 5. - Concluded. Typical surface velocity dis t r ibut ions i n  region from 
minimum loss t o  posit ive stall f o r  conventional cascade sections. 
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(a) NACA 65- (A10)- Series and British C .4 circular-arc blades. 

(b) NACA 65-(AI)-Series blades. 

Figure 6. - Correlation of wake momentum thickness with upper-surface 
diffusion ratio at reference minimum-loss angle of attack. 
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(a) NACA 65-(Al&Series  and B r i t i s h  C.4 c i r c u l a r - a r c  b lades .  

.- 

4 -  

(b )  NACA 65- (AI)-Series blades .  

Figure 7. - Cor re l a t ion  of wake momentum th ickness  with upper-surface d i f f u s i o n  r a t i o  
a t  angles of a t t a c k  g r e a t e r  than re ference  minimum loss .  
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.. 

Circulation parameter, r* 
(b)  NACA 65-(AI)-Series blades. 

Figure 8. - Correlation of upper-surface veloci ty  r a t i o  w i t h  
c i rculat ion parameter a t  reference minm- loss  angle of 
attack. 
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3 . 0 4 r  
4J I I I 

Solidity, Blade 
- CJ (table I) 

D l o o }  4 
f: 

-03- a 1.5 
r 1.0, 1.5 5 - 1.0, 1.5 6 

Limits of data of 
fig.  9(a) .o+ -- 

.01 

0 
1 

Equivalent diffusion ratio,  DZq 

(b) NACA 65- (AI)- Series blades. 

Figure 9. - Correlation of wake momentum thickness with equivalent 
diffusion ra t io  a t  minimum-loss angle of attack. 
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c 
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N 
N 

Circula t ion  parameter, r 
Figure 10. - I l l u s t r a t i v e  va r i a t ion  of co r re l a t ion  between 

upper-surface ve loc i ty  r a t i o  and c i r cu la t ion  parameter foi  
range of angle  of a t t ack .  Blade, NACA 65-(C2$Llo)10; air 
i n l e t  angle, 30'; s o l i d i t y ,  1.0 ( r e f .  9 ) .  

0 a 16 24 32 40 
Angle of a t t ack ,  a, deg 

Figure 11. - I l l u s t r a t i v e  comparison of experimental and 
derived empir ical  va r i a t ion  of upper-surface ve loc i ty  
r a t i o .  
s o l i d i t y ,  1.5 (ref.  9 ) .  

Blade, NACA 65-(C2&10)10; a i r  i n l e t  angle, 30'; 
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(b) Br i t i sh  C.4 circular-arc blades. 

Figure 13. - Correlation of wake momentum thickness with equivalent diffusion r a t i o  at  angles 
Of a t t ack  greater than minimum loss. 
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. . 

(c)  NACA 65-(Cz$i,18b)10 blades (blade 4).  

c 

* *  

(d) NACA 65- ( lUgI4) 10 and 65- (lUsI4b) 10 blades. 

Figure 13. - Concluded. Correlation of wake momentum thickness with 
equivalent diffusion r a t io  a t  angles of attack greater than 
m i n i m u m  loss.  
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04 

D 02 

0 
( b )  A i r  i n l e t  angle ,  45'. 

S o l i d i t y ,  0 

( c )  A i r  i n l e t  angle ,  60'. 

Figure 1 6 .  - Calculated v a r i a t i o n  with s o l i d i t y  of low-speed 
to ta l -pressure- loss  c o e f f i c i e n t  a t  minimum-loss angle  of 
a t t a c k  f o r  conventional compressor cascade blades.  
thickness  r a t i o ,  0.10, 

Maximum- 
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Figure 18. - Calculated va r i a t ion  of half  range from minimum l o s s  
t o  posi t ive s t a l l  with equivalent d i f fus ion  r a t i o  a t  minimum 
l o s s .  ( S t a l l  a t  Deq = 2 .O; f ixed air  i n l e t  angle.  ) 
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Figure 19. - Variation of wake momentum thickness with upper-surface 
diffusion r a t i o  a t  minimum loss f o r  65-(12A10)10 blade with varying 
maximum-thickness r a t i o  ( d a t a  from ref. 16). 
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